a2 United States Patent

Assarpour et al.

US009451056B2

10) Patent No.: US 9,451,056 B2

(54) METHOD FOR MAPPING PACKETS TO
NETWORK VIRTUALIZATION INSTANCES

(75) Inventors: Hamid Assarpour, Arlington, MA

(US); Marten Terpstra, Groton, MA

Us)
(73)

")

Assignee: Avaya Inc., Basking Ridge, NJ (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 455 days.

@
(22)

Appl. No.: 13/539,276

Filed: Jun. 29, 2012

(65) Prior Publication Data

US 2014/0003434 Al Jan. 2, 2014

Int. CL.

HO4L 12/28
HO4L 29/06
HO4L 29/08
HO4L 12/26
U.S. CL

CPC

(51)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(52)
HO4L 69/22 (2013.01); HO4L 43/026
(2013.01); HO4L 69/321 (2013.01); HO4L

69/324 (2013.01)

(58) Field of Classification Search
USPC 370/329, 395.53

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2002/0145981 Al* 10/2002 Klinker et al. 370/244
2005/0185647 Al* 82005 Rao HO4L 12/4641
370/392

45) Date of Patent: Sep. 20, 2016
2006/0165103 Al* 7/2006 Trudeau et al. 370/401
2007/0147363 Al* 6/2007 Oswal et al. 370/389
2007/0283014 Al* 12/2007 Shinomiya et al. ... 709/225
2008/0112403 Al1* 5/2008 Larsen et al. 370/389
2008/0155676 Al* 6/2008 Johnson et al. 726/13
2008/0170573 Al* 7/2008 Ould-Brahim 370/392
2008/0172497 Al* 7/2008 Mohan 04L 12/4616

709/249

2009/0141703 Al* 6/2009 Ghodrat et al. 370/352
2010/0098098 Al* 4/2010 Daines et al. 370/401
2011/0032843 Al1* 2/2011 Papp et al. 370/254
2012/0039332 Al* 2/2012 Jackowski et al. 370/389
2013/0107887 Al* 5/2013 Pearson et al. 370/401
2013/0322453 Al* 12/2013 Allanc.cooevee HO4L 12/4662
370/395.53

OTHER PUBLICATIONS

IEEE, IEEE Standard for Local and metropolitan area networks—
Virtual Bridged Local Area Networks Amendment 7: Provider
Backbone Bridges (IEEE Std 802.1ah™-2008), Aug. 14, 2008, p.
5'*

* cited by examiner

Primary Examiner — Hanh N Nguyen
Assistant Examiner — Jose Perez

(57) ABSTRACT

An operating system adds an application signature as a tag
in a packet header. In one embodiment the tag is inserted as
a Q-tag in an Ethernet header. When a network element
receives the tagged packet, it uses the tag alone or in
combination with one or more additional header fields to
map the packet to a network virtualization identifier segre-
gating the application traffic on the network. Services are
applied to packets according to network virtualization iden-
tifier to enable distributed application of services without
requiring network elements to maintain state associated with
packet flows.

11 Claims, 5 Drawing Sheets

10
-
[s |) [z —|a]
16 18 12 IE A 12 18
m){m] S
18 |——" 18 18— 16
{

Legend:

10: Network

12: Network Element
16: End System

18: Application facing interface

20: Network facing interface

|

=

U.S. Patent Sep. 20, 2016 Sheet 1 of 5 US 9,451,056 B2

FIG. 1

—_

0

10—
L1

il
o[

L
s
i

Legend:
10: Network

12: Network Element 12
16: End System
18: Application facing interface 18 ‘

20: Network facing interface e

les

U.S. Patent

Sep. 20, 2016

FIG. 2

Sheet 2 of 5

US 9,451,056 B2

Network Element 12

Control Processes 200

Network Processing Unit

230 (X J
A Line Card 210
A-2
A-3 Processor 220
A-4
® Switch
[) Fabric
® 240
B-1 Line Card 210
B-2
B-3 Processor 220
B4

Network Processing Unit

230

Line Card 210 C-1
c-2
Processor 220 c-3
c4

@

®

®
Line Card 210 D-1
D-2
D-3

Processor 220

D4

U.S. Patent Sep. 20, 2016 Sheet 3 of 5 US 9,451,056 B2

FIG. 3
Application 300 Add TCP/UDP Header 322
E ; Add application Signature Tag 326
Operating System 320 Add IP Header 324
MAC 330 — Add MAC header 332 |
NIC/Physical Layer 340 | ——| Add PHY header 342 |
Network
FIG. 4
Application 00 Add TCP/UDP Header
Socket 410 Add application Signature Tag
Operating System 420 > Add IP Header

Virtual Machine 430 — Add MAC header

Virtual NIC 440

Virtual Switch 450

NIC/Physical Layer 460 || Add PHY header

Network

U.S. Patent Sep. 20, 2016 Sheet 4 of 5 US 9,451,056 B2

FIG. 5
802.1Qay
(Switch based on
802.1ad 209 1ah
802.1Q (Qin Q) (Min M)
C-DA 500 C-DA 500 B-DA 508
C-SA 502 C-SA 502 B-SA 510
C-VID 504 S-VID 506 B-VID 512
Payload C-VID 504 I-SID 514
Payload C-DA500 | - &
C-SA502 | |
S-VID 506
C-VID 504
Payload

U.S. Patent Sep. 20, 2016 Sheet 5 of 5 US 9,451,056 B2

FIG. 6

600
/_

Receive packet containing application
signature tag

[-

Map application signature tag to
network virtualization ID

[

Implement network services based on
network virtualization |D

US 9,451,056 B2

1
METHOD FOR MAPPING PACKETS TO
NETWORK VIRTUALIZATION INSTANCES

CROSS-REFERENCE TO RELATED
APPLICATIONS

None.
BACKGROUND

1. Field

This application relates to communication networks and,
more particularly, to a method for packet marking.

2. Description of the Related Art

Data communication networks may include various
switches, nodes, routers, and other devices coupled to and
configured to pass data to one another. These devices will be
referred to herein as “network elements”. Data is commu-
nicated through the data communication network by passing
protocol data units, such as frames, packets, cells, or seg-
ments, between the network elements by utilizing one or
more communication links. A particular protocol data unit
may be handled by multiple network elements and cross
multiple communication links as it travels between its
source and its destination over the network.

Applications, such as email applications, instant messag-
ing applications, web browsers, and other applications run-
ning on end user devices transmit packets of data on the
network. A given end user device may have multiple such
applications transmitting data on the network and receiving
data from the network. Likewise virtual machines running
on servers in a data center may have multiple applications
transmitting and receiving data from the network.

Different applications may have different tolerances for
latency (delay), jitter (differences between the amount of
time it takes individual packets to be transmitted on the
network), and packet loss, in connection with transmission
of data on the network. To enable these applications to
operate correctly, it may be desirable to have the network
treat flows of packets from different applications differently.

To enable this to occur, the network elements must be able
to identify which packets are associated with which appli-
cations. One way to attempt to do this is to have the network
elements classify packets into flows and apply services on a
per-flow basis. Unfortunately, traffic from a given applica-
tion may include multiple TCP/UDP sessions where Layers
3 and 4 of the seven layer networking stack are being used
for transport control, or multiple HT'TP sessions where layer
7 (application layer) is being used to implement transport
control. Further, on top of that, the application may encrypt
the data being transmitted (layer 7 encryption) and option-
ally the network itself may implement layer 2 or layer 3
encryption, for example in connection with implementing a
Virtual Private Network (VPN).

Additionally, keeping track of flows of data requires the
network elements to be stateful—the network elements need
to keep track of which flows are associated with particular
applications. Designing the network elements to keep state
of this nature is expensive from a network element design
standpoint. Likewise, requiring the network elements to
associate packets with flows in connection with providing
services can also increase latency associated with packet
forwarding, as the increased processing associated with
performing this correlation translates to increased delay in
implementing a forwarding decision. Further when the data
itself is encrypted, it may not be possible to determine which
packet is associated with a particular application, so even if

10

25

40

45

2

it were possible to maintain state it may not be possible to
implement per packet services on the network.

SUMMARY OF THE DISCLOSURE

The following Summary, and the Abstract set forth at the
end of this application, are provided herein to introduce
some concepts discussed in the Detailed Description below.
The Summary and Abstract sections are not comprehensive
and are not intended to delineate the scope of protectable
subject matter which is set forth by the claims presented
below.

An operating system adds an application signature as a tag
in a packet header. In one embodiment the tag is inserted as
a Q-tag in an Ethernet header. When a network element
receives the tagged packet, it uses the tag alone or in
combination with one or more additional header fields to
map the packet to a network virtualization identifier segre-
gating the application traffic on the network. Services are
applied to packets according to network virtualization iden-
tifier to enable distributed application of services without
requiring network elements to maintain state associated with
packet flows.

BRIEF DESCRIPTION OF THE DRAWINGS

Aspects of the present invention are pointed out with
particularity in the claims. The following drawings disclose
one or more embodiments for purposes of illustration only
and are not intended to limit the scope of the invention. In
the following drawings, like references indicate similar
elements. For purposes of clarity, not every element may be
labeled in every figure. In the figures:

FIG. 1 is a functional block diagram of an example
network;

FIG. 2 is a functional block diagram of an example
network element;

FIGS. 3 and 4 are functional block diagrams showing
processing environments of example network elements; and

FIG. 5 is a block diagram showing several example
header formats for Ethernet frames; and

FIG. 6 is a flow diagram of a process according to an
embodiment.

DETAILED DESCRIPTION

The following detailed description sets forth numerous
specific details to provide a thorough understanding of the
invention. However, those skilled in the art will appreciate
that the invention may be practiced without these specific
details. In other instances, well-known methods, procedures,
components, protocols, algorithms, and circuits have not
been described in detail so as not to obscure the invention.

FIG. 1 illustrates an example of a network 10 in which a
plurality of network elements 12 such as switches and
routers are interconnected to transmit packets of data. Net-
work elements 12 receive packets from end systems 16,
process the packets, and forward packets of data toward their
destination on the network. End systems 16 include com-
puters (FIG. 3), servers (FIG. 4), or other packet sources. An
example network element 12 is discussed in greater detail
below in connection with FIG. 2.

Network elements 12, in one embodiment, are access
devices configured to implement application facing inter-
faces 18 interconnecting the network 10 with end systems 16
as well as network facing interfaces 20 interconnecting the
network element 12 with other network elements within

US 9,451,056 B2

3

network 10. The processes described herein for handling
packets may be implemented in multiple types of network
elements. The network element of FIG. 2 may be used as an
edge network element such as an edge router, a core network
element such as a router/switch, or as another type of
network element. The network element 12 may be imple-
mented on a communication network utilizing one of the
Ethernet 802.1 standards, such as 802.1ad, 802.1ah,
802.1Qay, 802.1aq, or other routed Ethernet standard. The
network element 12 may also be used in other types of
wired/wireless communication networks in which it is
desired to provide services to packets on a per-application
basis.

As shown in FIG. 2, the network element 12 includes one
or more control processes 200 to control operation of the
network element. Example control processes may include
routing processes, network operation administration and
management software, an interface creation/management
process, and other processes. The particular manner in
which the network element is being controlled is not par-
ticularly important to understanding operation of the net-
work element on the network and, accordingly, has not been
treated in excessive detail herein.

The control processes 200 program hardware forming a
data plane of the network element to enable the network
element to handle the rapid transmission of packets of data.
The data plane, in the illustrated embodiment, includes ports
(labeled A1-A4, B1-B4, C1-C4, D1-D4) connected to physi-
cal media to receive and transmit data. The physical media
may include fiber optic cables or electrical wires. Alterna-
tively, the physical media may be implemented as a wireless
communication channel, for example using one of the cel-
lular, 802.11 or 802.16 wireless communication standards.
In the illustrated example, ports are supported on line cards
210 to facilitate easy port replacement, although other ways
of implementing the ports may be used as well.

The line cards 210 have processing capabilities such as a
microprocessor 220 or other hardware configured to format
the packets, perform pre-classification of the packets, etc.
The data plane further includes one or more Network
Processing Unit (NPU) 230 and a switch fabric 240. The
NPU and switch fabric enable data to be switched between
ports to allow the network element to forward network traffic
toward its destination on the network.

According to an embodiment, as described in greater
detail below, an application tag such as the application tag
proposed in an IETF Internet Draft entitled Classification of
Traffic using Application Tags (draft-jpathra-application-
tag-11.txt) is used to enable the operating system to apply an
application signature to traffic generated by the application.
Other tags may be used as well, to enable the application
associated with the packet to be disambiguated by the
network elements handling flows of traffic.

In an embodiment, the application creates the application
signature and passes the application signature to the oper-
ating system. The operating system receives data to be
transmitted on the network via a socket, encapsulates the
data for transportation on the network, and, as part of the
encapsulation process adds the application signature to the
packet.

The application signature tag is then used, alone or in
connection with additional fields of the packet header, to
map the packet to a network virtualization identifier.
Example network virtualization identifiers may include Eth-
ernet Virtual Local Area Network ID (VLAN ID or VID),
I-component Service Identifier (I-SID), VXLAN (Virtual
Extensible Local Area Network), NVGRE (Network Virtu-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

alization using Generic Routing Encapsulation), or other
network virtualization identifier in use on the network.

Services are then provided on the network at the VID or
ISID level to enable distributed individualized services to be
provided without requiring the network elements providing
the services to be stateful. Specifically, as network elements
receive data, the network elements will determine the net-
work virtualization identifier and apply services to the
packets on a per network virtualization identifier basis.
Accordingly, determining a set of services collapses to
determining a network virtualization identifier, and network
aware services may be provided despite the use of L.3/1.4 or
L7 encryption. Example services include distributed state-
less firewall services, in which individual ports on network
elements throughout the network may be used to implement
firewall services because of the ability to see all flows based
on the network virtualization identifier. Likewise, Quality of
Service (QoS), traffic policing and shaping, and traffic
re-route may be implemented in a distributed manner by the
network elements based on the network virtualization iden-
tifier.

Since services are applied based on network virtualization
identifier, traffic from multiple applications requiring similar
services may be mapped to the same network virtualization
identifier. Accordingly, application of services on a per-
application basis may be implemented using one network
virtualization identifier per set of services rather than one
network virtualization identifier per application.

FIG. 3 shows an example end system 16. As shown in
FIG. 3, an end system such as a personal computer or other
computing device designed to transmit packets on a network
typically includes multiple processes which interact with
each other to provide data, format the data for transmission,
and send the data on the network. In the example shown in
FIG. 3, an application 300 running on the end system
communicates data to be transmitted on the network via a
socket 310 to an operating system 320. The operating system
receives the data and divides the data into packets of data to
be transmitted on the network. In addition, the operating
system is responsible for adding a layer 4 (transport layer)
header such as a TCP/UDP header 322 to enable the end
systems to enable the transport of the data to be monitored
on the network, and also adds a layer 3 (routing layer) header
such as an IP header 324 to the packet.

The packetized data is passed to a Media Access Control
(MAC) layer which is responsible for adding one or more
MAC headers 332 to the packet. According to an embodi-
ment, the operating system also adds an application signa-
ture tag 326 to the packet which is added either as a tag in
a field of the IP header or which is passed from the OS to the
MAC layer and used by the MAC layer to populate a field
of the MAC header 332.

Optionally, where the application signature tag 326 is
carried as a Q-tag in a MAC header, an Ethertype MAY be
defined to indicate the significance of the value carried in
that field. For example, an Ethertype may be defined to
signal that normal Q-in-Q tagging is not being used and that
the Q-tag contains an application signature to allow other
nodes on the network to understand that the value carried by
the Q-tag is to be used to map the packet to a network
virtualization based on the type of services to be applied to
the packet. Creation of a particular Ethertype is not a
requirement, however.

FIG. 5 shows some of the fields of three example MAC
header formats. As shown in FIG. 5, a MAC header may
include a Customer Destination Address (C-DA) field 500
specifying a destination for the packet, a Customer Source

US 9,451,056 B2

5

Address (C-SA) field 502 specifying a source of the packet,
and one or more Virtual Local Area Network (V-LAN)
Identifiers (VIDs). For example, Ethernet standard IEEE
802.1Q enables a customer to add a VL AN tag specifying a
customer VLAN using C-VID 504. This VLAN tag is
commonly referred to as a Q-tag. Ethernet standard 802.1ad
allows two Q-tags to be added to the Ethernet header—a
customer VID (C-VID 504) and a provider VID (S-VID
506). Ethernet standard 802.1Qay further adds an additional
MAC header including the provider source and destination
address fields (B-SA 510 and B-DA 508), provider VID
(B-VID) 512, and service identifier (I-SID) 514. The par-
ticular standards are quite detailed, and FIG. 5 is merely
intended to provide a high level overview of a selection of
pertinent fields of Ethernet headers that may be applied to
packets of data in connection with forwarding the packets on
an Ethernet network.

802.1Q is commonly implemented at end systems 16.
802.1ad and 802.1Qay are more commonly implemented by
service providers, such as by an operator of network 10 and
would be implemented, for example, at network elements
12. According to an embodiment, an application signature
tag 326 identifying the application, application type, or class
of'application, is added by the operating system to the packet
prior to passing the packet to the MAC layer 300. The MAC
layer adds the application signature tag as a Q-tag in C-VID
field 504 when adding a MAC header as specified in IEEE
802.1Q. In another embodiment, the MAC layer adds the
application signature tag as a Q-tag in either the S-VID field
506, or the C-VID field 504 when adding a MAC header as
specified in 802.1ad, 802.1Qay, or 802.1ah.

The MAC-encapsulated packet is then passed to the
network interface card (NIC) or other physical layer 340 to
be forwarded onto the network. The physical layer may add
an IEEE 802.3 Ethernet header 342 or otherwise format the
packet for transmission on the network. When the packet is
received at an application facing interface at network ele-
ment 12, the application signature tag is used by the network
element to map the packet to a network virtualization
identifier based on a set of services to be applied to the
packet by the network.

FIG. 4 illustrates another end system which may be
implemented, for example, in a data center. In the example
shown in FIG. 4, application 400 is communicating with
operating system 420 via socket 410. Application 400,
operating system 420, and socket 410 collectively form a
virtual machine. Hypervisor 430, implementing a virtual
machine manager such as VM Ware, is provided to imple-
ment hardware virtualization to allow multiple operating
systems such as operating system 420 to run concurrently on
a host computer.

Hypervisor 430 communicates via virtual Network Inter-
face Card 440 with a virtual switch 450. The virtual switch
enables the virtual machines to communicate with each
other within the server. Where packets are to be forwarded
between virtual machines within the server, the virtual
switch receives MAC encapsulated packets and forwards
them within the server. Where the packets are to be trans-
mitted outside the server, the virtual switch forwards the
packets to a Network Interface Card/physical layer 460 for
formatting and forwarding on the network 10.

In the example shown in FIG. 4, the operating system 420,
like the operating system 320, adds the TCP/UDP (layer 4)
header, the IP (layer 3) header, and the application signature
tag. The application signature tag is then used by the MAC
layer and added as a Q-tag in either a C-VID or S-VID field
depending on the type of MAC forwarding being imple-

20

25

30

40

45

6

mented by the virtual switch. The virtual switch may map
the packet to a network virtualization identifier based on a
set of services to be applied to the packet by the network, or
alternatively this mapping may occur after transmission
from the end system shown in FIG. 4 when the packet is
received at an application facing interface at network ele-
ment 12.

FIG. 6 shows a process implemented by network element
12 upon receipt of a packet carrying an application signature
tag. As shown in FIG. 6, when a network element receives
a packet containing an application signature tag (600), it will
use the application signature tag, optionally in connection
with one or more fields of the MAC header, to map the
packet to a network virtualization instance (602). The net-
work virtualization instance (NVI) may be implemented as
a VXLAN, NVGRE, NWID, ISID, or other virtualization
instance. Network services are then implemented by net-
work elements in connection with packets of data transmit-
ted on the network according to the network virtualization
identifier that has been assigned to the packets (604).

The network virtualization identifier may be selected on a
per-application basis, in which a unique network virtualiza-
tion identifier is assigned to each application.

The network virtualization identifier may be selected on a
per-application type basis, in which a unique network vir-
tualization identifier is assigned to each application type.
Where network virtualization identifiers are assigned on a
per-application type basis, all packets from applications of
that type would be assigned to the same network virtualiza-
tion identifier. For example, all email traffic from email
applications would be assigned to the same network virtu-
alization identifier.

The network virtualization identifier may be selected on a
per-set of services basis, in which a unique network virtu-
alization identifier is assigned to each set of services that are
to be applied to packets. When network virtualization iden-
tifiers are assigned based on the set of services to be applied
to packets, multiple applications requiring similar services
to be applied to packets may have traffic commonly mapped
to the same network virtualization identifier. For example, if
both Voice and Video telephony have similar latency and
jitter requirements, packets from voice applications and
video telephony applications may be mapped to the same
network virtualization identifier to allow the network to
commonly apply services to comply with the latency and
jitter requirements for packets associated with the selected
network virtualization identifier.

In one embodiment, the application signature tag is used
alone to map the packet to a network virtualization instance.
In this embodiment, the application signature tag directly
specifies to the network the type of services to be provided
to packets associated with the application signature tag
value. To implement a correct set of services, the network
elements on the network establish a network virtualization
instance within which the appropriate set of services are
provided. For example, an enhanced quality of service may
be specified for applications of a particular type. Via a
control plane operating on the network, the network ele-
ments may be instructed to provide the enhanced quality of
service for all packets being transmitted within a particular
network virtualization instance. All packets having carrying
an identifier of the network virtualization instance within a
VLAN ID tag field will be forwarded within the network
virtualization instance and provided with this enhanced
quality of service.

Likewise, distributed firewall services may be imple-
mented on the network at any port configured to implement

US 9,451,056 B2

7

forwarding within a network virtualization instance. In this
embodiment, packets associated with an application signa-
ture tag are mapped, by the network element 12, to a
network virtualization instance as they are received at the
network. Network elements implement MAC learning
within the network virtualization instance as packets are
received. If a packet is received with a network destination
address that is not resolvable within the network virtualiza-
tion instance (e.g. via ARP), the packet will be dropped.
Similarly, if the packet is received within a source address
that is not associated with the network virtualization
instance, the packet will be dropped. This allows any port on
the network that receives a packet associated with the
application signature tag to perform firewall services to
prevent rogue traffic from being transmitted within the
network virtualization instance. Moreover, state is not
required to be implemented to enable the network elements
to implement the distributed firewall services. Rather, all
network elements simply behave as normal MAC forward-
ing instances and enable layer 2 MAC forwarding to handle
rejection of rogue packets attempting to transit the network
with a spoofed or otherwise incorrect application signature
tag.

By mapping application signature tags to network virtu-
alization instances, such as VL AN or ISID, network services
are able to be provided by network elements at the VLAN
or ISID level. Since network elements provide multiple
types of services at the VLAN or ISID level, this allows
application specific handling to be collapsed to network
forwarding, which is easy to implement and straightforward
to achieve without significant modification to the deployed
infrastructure of network elements. Additionally, network
elements commonly are equipped to handle large numbers
of network virtualization instances (on the order of thou-
sands), which enables fine grained differentiation between
applications at the network level without requiring the
network elements to be statefully aware of flows of traffic on
the network.

The functions described herein may be embodied as a
software program implemented in control logic on a pro-
cessor on the network element or may be configured as a
FPGA or other processing unit on the network element. The
control logic in this embodiment may be implemented as a
set of program instructions that are stored in a computer
readable memory within the network element and executed
on a microprocessor on the network element. However, in
this embodiment as with the previous embodiments, it will
be apparent to a skilled artisan that all logic described herein
can be embodied using discrete components, integrated
circuitry such as an Application Specific Integrated Circuit
(ASIC), programmable logic used in conjunction with a
programmable logic device such as a Field Programmable
Gate Array (FPGA) or microprocessor, or any other device
including any combination thereof. Programmable logic can
be fixed temporarily or permanently in a tangible non-
transitory computer-readable medium such as a random
access memory, cache memory, read-only memory chip, a
computer memory, a disk, or other storage medium. All such
embodiments are intended to fall within the scope of the
present invention.

It should be understood that various changes and modi-
fications of the embodiments shown in the drawings and
described herein may be made within the spirit and scope of
the present invention. Accordingly, it is intended that all
matter contained in the above description and shown in the
accompanying drawings be interpreted in an illustrative and

8

not in a limiting sense. The invention is limited only as
defined in the following claims and the equivalents thereto.

What is claimed is:

1. A method of mapping packets of data to network

5 virtualization instances, the method comprising the steps of:

creating, by a Media Access Control (MAC) process of an

end system, MAC headers for packets of data, at least
some of the packets of data being tagged with appli-
cation signature tags implemented using a field of

10 Internet Protocol (IP) headers of the packets of data, the

step of creating MAC headers including a step of
mapping the packets of data that are tagged with
application signature tags to a set of network virtual-
ization identifiers based on the application signature
15 tags, the set of network virtualization identifiers being
implemented using a field of the MAC headers;
receiving, by a network element, the plurality of packets
of data;

applying sets of network services to the packets based on

20 the network virtualization identifiers, the sets of net-

work services being configured in the network element
and associated with network virtualization instances;
and

forwarding, by the network element, the packets of data

25 within the network virtualization instances;

wherein the step of mapping the packets of data to

network virtualization identifiers causes packets from
applications requiring the same sets of network services
to be forwarded by the network element within the

30 same network virtualization instances.

2. The method of claim 1, wherein the step of mapping
uses a combination of fields of the IP headers in addition to
the application signature tags.

3. The method of claim 1, wherein the network virtual-

35 ization identifiers are Virtual Local Area Network Identifiers
(VLAN IDs).

4. The method of claim 1, wherein the network virtual-
ization identifiers are I-component Service Identifier
(ISIDs).

40 5. The method of claim 1, wherein the step of applying
sets of network services includes applying, by the network
element, a specified level of quality of service to packets
within the network virtualization instance.

6. The method of claim 5, wherein the specified level of

45 quality of service enables latency for packets within the
network virtualization instance to be specified.

7. The method of claim 1, wherein the packets of data
include encrypted payload portions, and wherein the step of
mapping occurs without reference to data carried within the

50 encrypted payload portions.

8. The method of claim 1, further comprising the steps of
receiving, by a second network element, the packets of data
within the network virtualization instances and applying, by
the second network element the sets of network services to

55 the packets within the network virtualization instances, the
sets of network services being configured in the second
network element and associated with the network virtual-
ization instances.

9. The method of claim 1, wherein the sets of network

60 services include traffic policing, traffic shaping, and Quality
of Service.

10. The method of claim 1, wherein the sets of network
services include stateless firewall services.

11. An end system, comprising:

65 an operating system;

two or more applications communicating with the oper-

ating system via sockets; and

US 9,451,056 B2
9

a Media Access Control (MAC) process in communica-
tion with the operating system;

wherein the operating system is configured to receive data
from the application via the sockets, divide the data into
the packets of data, add transport layer headers to the 5
packets of data, add routing layer headers to the packets
of data, and pass application signature tags for the
packets of data to the MAC process, the application
signature tags being based on identities of the applica-
tions from which the data was received; and 10

wherein the MAC process is configured to receive the
packets of data from the operating system, apply MAC
headers to the packets of data, and in connection with
applying the MAC headers to the packets of data, map
the packets of data to network virtualization identifiers 15
based on the application signature tags and sets of
network services to be applied to the packets, the MAC
process being further configured to insert as Q-tags in
the MAC headers, values associated with the applica-
tion signature tags received from the Operating System, 20
the Q-tags identifying network virtualization instances
on the network within which the sets of network
services will be applied to the packets of data.

#* #* #* #* #*

